Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Nanotechnol ; 19(4): 514-523, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38212522

RESUMO

One of the critical factors determining the performance of neural interfaces is the electrode material used to establish electrical communication with the neural tissue, which needs to meet strict electrical, electrochemical, mechanical, biological and microfabrication compatibility requirements. This work presents a nanoporous graphene-based thin-film technology and its engineering to form flexible neural interfaces. The developed technology allows the fabrication of small microelectrodes (25 µm diameter) while achieving low impedance (∼25 kΩ) and high charge injection (3-5 mC cm-2). In vivo brain recording performance assessed in rodents reveals high-fidelity recordings (signal-to-noise ratio >10 dB for local field potentials), while stimulation performance assessed with an intrafascicular implant demonstrates low current thresholds (<100 µA) and high selectivity (>0.8) for activating subsets of axons within the rat sciatic nerve innervating tibialis anterior and plantar interosseous muscles. Furthermore, the tissue biocompatibility of the devices was validated by chronic epicortical (12 week) and intraneural (8 week) implantation. This work describes a graphene-based thin-film microelectrode technology and demonstrates its potential for high-precision and high-resolution neural interfacing.


Assuntos
Grafite , Nanoporos , Ratos , Animais , Microeletrodos , Próteses e Implantes , Estimulação Elétrica
2.
Cells ; 10(6)2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34070547

RESUMO

Mesenchymal stromal cells (MSC) are used for cell therapy for spinal cord injury (SCI) because of their ability to support tissue repair by paracrine signaling. Preclinical and clinical research testing MSC transplants for SCI have revealed limited success, which warrants the exploration of strategies to improve their therapeutic efficacy. MSC are sensitive to the microenvironment and their secretome can be altered in vitro by exposure to different culture media. Priming MSC with inflammatory stimuli increases the expression and secretion of reparative molecules. We studied the effect of macrophage-derived inflammation priming on MSC transplants and of primed MSC (pMSC) acute transplants (3 days) on spinal cord repair using an adult rat model of moderate-severe contusive SCI. We found a decrease in long-term survival of pMSC transplants compared with unprimed MSC transplants. With a pMSC transplant, we found significantly more anti-inflammatory macrophages in the contusion at 4 weeks post transplantation (wpt). Blood vessel presence and maturation in the contusion at 1 wpt was similar in rats that received pMSC or untreated MSC. Nervous tissue sparing and functional recovery were similar across groups. Our results indicate that macrophage-derived inflammation priming does not increase the overall therapeutic potential of an MSC transplant in the adult rat contused spinal cord.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Macrófagos/citologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Traumatismos da Medula Espinal/terapia , Animais , Células Cultivadas , Técnicas de Cocultura , Feminino , Ratos , Ratos Sprague-Dawley
3.
Front Cell Neurosci ; 13: 40, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30809129

RESUMO

Axonal growth during normal development and axonal regeneration rely on the action of many receptor signaling systems and complexes, most of them located in specialized raft membrane microdomains with a precise lipid composition. Cholesterol is a component of membrane rafts and the integrity of these structures depends on the concentrations present of this compound. Here we explored the effect of cholesterol depletion in both developing neurons and regenerating axons. First, we show that cholesterol depletion in vitro in developing neurons from the central and peripheral nervous systems increases the size of growth cones, the density of filopodium-like structures and the number of neurite branching points. Next, we demonstrate that cholesterol depletion enhances axonal regeneration after axotomy in vitro both in a microfluidic system using dissociated hippocampal neurons and in a slice-coculture organotypic model of axotomy and regeneration. Finally, using axotomy experiments in the sciatic nerve, we also show that cholesterol depletion favors axonal regeneration in vivo. Importantly, the enhanced regeneration observed in peripheral axons also correlated with earlier electrophysiological responses, thereby indicating functional recovery following the regeneration. Taken together, our results suggest that cholesterol depletion per se is able to promote axonal growth in developing axons and to increase axonal regeneration in vitro and in vivo both in the central and peripheral nervous systems.

4.
Anat Rec (Hoboken) ; 301(10): 1722-1733, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30353712

RESUMO

Intraneural electrodes must be in intimate contact with nerve fibers to have a proper function, but this interface is compromised due to the foreign body reaction (FBR). The FBR is characterized by a first inflammatory phase followed by a second anti-inflammatory and fibrotic phase, which results in the formation of a tissue capsule around the implant, causing physical separation between the active sites of the electrode and the nerve fibers. We have tested systemically several anti-inflammatory drugs such as dexamethasone (subcutaneous), ibuprofen and maraviroc (oral) to reduce macrophage activation, as well as clodronate liposomes (intraperitoneal) to reduce monocyte/macrophage infiltration, and sildenafil (oral) as an antifibrotic drug to reduce collagen deposition in an FBR model with longitudinal Parylene C intraneural implants in the rat sciatic nerve. Treatment with dexamethasone, ibuprofen, or clodronate significantly reduced the inflammatory reaction in the nerve in comparison to the saline group after 2 weeks of the implant, whereas sildenafil and maraviroc had no effect on infiltration of macrophages in the nerve. However, only dexamethasone was able to significantly reduce the matrix deposition around the implant. Similar positive results were obtained with dexamethasone in the case of polyimide-based intraneural implants, another polymer substrate for the electrode. These results indicate that inflammation triggers the FBR in peripheral nerves, and that anti-inflammatory treatment with dexamethasone may have beneficial effects on lengthening intraneural interface functionality. Anat Rec, 301:1722-1733, 2018. © 2018 Wiley Periodicals, Inc.


Assuntos
Anti-Inflamatórios/uso terapêutico , Dexametasona/uso terapêutico , Eletrodos Implantados/efeitos adversos , Reação a Corpo Estranho/prevenção & controle , Neuropatia Tibial/prevenção & controle , Animais , Anti-Inflamatórios/farmacologia , Dexametasona/farmacologia , Avaliação Pré-Clínica de Medicamentos , Feminino , Reação a Corpo Estranho/etiologia , Polímeros/efeitos adversos , Ratos Sprague-Dawley , Neuropatia Tibial/etiologia
5.
Cell Death Dis ; 9(7): 776, 2018 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-29991677

RESUMO

Duchenne muscle dystrophy (DMD) is a genetic disorder characterized by progressive skeletal muscle weakness. Dystrophin deficiency induces instability of the sarcolemma during muscle contraction that leads to muscle necrosis and replacement of muscle by fibro-adipose tissue. Several therapies have been developed to counteract the fibrotic process. We report the effects of nintedanib, a tyrosine kinase inhibitor, in the mdx murine model of DMD. Nintedanib reduced proliferation and migration of human fibroblasts in vitro and decreased the expression of fibrotic genes such as COL1A1, COL3A1, FN1, TGFB1, and PDGFA. We treated seven mdx mice with 60 mg/kg/day nintedanib for 1 month. Electrophysiological studies showed an increase in the amplitude of the motor action potentials and an improvement of the morphology of motor unit potentials in the animals treated. Histological studies demonstrated a significant reduction of the fibrotic areas present in the skeletal muscles. Analysis of mRNA expression from muscles of treated mice showed a reduction in Col1a1, Col3a1, Tgfb1, and Pdgfa. Western blot showed a reduction in the expression of collagen I in skeletal muscles. In conclusion, nintedanib reduced the fibrotic process in a murine model of dystrophinopathy after 1 month of treatment, suggesting its potential use as a therapeutic drug in DMD patients.


Assuntos
Fibrose/tratamento farmacológico , Indóis/uso terapêutico , Músculo Esquelético/efeitos dos fármacos , Distrofia Muscular de Duchenne/tratamento farmacológico , Potenciais de Ação/efeitos dos fármacos , Animais , Colágeno Tipo I/metabolismo , Cadeia alfa 1 do Colágeno Tipo I , Colágeno Tipo III/metabolismo , Modelos Animais de Doenças , Distrofina/metabolismo , Fibrose/metabolismo , Masculino , Camundongos , Contração Muscular/efeitos dos fármacos , Debilidade Muscular/tratamento farmacológico , Debilidade Muscular/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
6.
Sci Rep ; 8(1): 5965, 2018 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-29654317

RESUMO

Parylene C is a highly flexible polymer used in several biomedical implants. Since previous studies have reported valuable biocompatible and manufacturing characteristics for brain and intraneural implants, we tested its suitability as a substrate for peripheral nerve electrodes. We evaluated 1-year-aged in vitro samples, where no chemical differences were observed and only a slight deviation on Young's modulus was found. The foreign body reaction (FBR) to longitudinal Parylene C devices implanted in the rat sciatic nerve for 8 months was characterized. After 2 weeks, a capsule was formed around the device, which continued increasing up to 16 and 32 weeks. Histological analyses revealed two cell types implicated in the FBR: macrophages, in contact with the device, and fibroblasts, localized in the outermost zone after 8 weeks. Molecular analysis of implanted nerves comparing Parylene C and polyimide devices revealed a peak of inflammatory cytokines after 1 day of implant, returning to low levels thereafter. Only an increase of CCL2 and CCL3 was found at chronic time-points for both materials. Although no molecular differences in the FBR to both polymers were found, the thick tissue capsule formed around Parylene C puts some concern on its use as a scaffold for intraneural electrodes.


Assuntos
Materiais Biocompatíveis/administração & dosagem , Nervos Periféricos/efeitos dos fármacos , Polímeros/administração & dosagem , Xilenos/administração & dosagem , Animais , Citocinas/metabolismo , Módulo de Elasticidade/efeitos dos fármacos , Eletrodos Implantados , Feminino , Reação a Corpo Estranho/tratamento farmacológico , Reação a Corpo Estranho/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Microeletrodos , Nervos Periféricos/metabolismo , Ratos , Ratos Sprague-Dawley , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/metabolismo
7.
J Tissue Eng Regen Med ; 12(4): e1991-e2000, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29266822

RESUMO

Segregation of regenerating motor and sensory axons may be a good strategy to improve selective functionality of regenerative interfaces to provide closed-loop commands. Provided that extracellular matrix components and neurotrophic factors exert guidance effects on different neuronal populations, we assessed in vivo the potential of separating sensory and motor axons regenerating in a bicompartmental Y-type tube, with each branch prefilled with an adequate combination of extracellular matrix and neurotrophic factors. The severed rat sciatic nerve was repaired using a bicompartmental tube filled with a collagen matrix enriched with fibronectin (FN) and brain-derived neurotrophic factor (BDNF) encapsulated in poly-lactic co-glycolic acid microspheres (FN + MP.BDNF) in one compartment to preferentially attract motor axons and collagen enriched with laminin (LM) and nerve growth factor (NGF) and neurotrophin-3 (NT-3) in microspheres (LM + MP.NGF/NT-3) in the other compartment for promoting sensory axons regeneration. Control animals were implanted with the same Y-tube with a collagen matrix with microspheres (MP) containing PBS (Col + MP.PBS). By using retrotracer labelling, we found that LM + MP.NGF/NT-3 did not attract higher number of regenerated sensory axons compared with controls, and no differences were observed in sensory functional recovery. However, FN + MP.BDNF guided a higher number of regenerating motor axons compared with controls, improving also motor recovery. A small proportion of sensory axons with large soma size, likely proprioceptive neurons, was also attracted to the FN + MP.BDNF compartment. These results demonstrate that muscular axonal guidance can be modulated in vivo by the addition of fibronectin and BDNF.


Assuntos
Axônios/metabolismo , Matriz Extracelular/química , Neurônios Motores/metabolismo , Fatores de Crescimento Neural , Regeneração/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo , Animais , Axônios/patologia , Feminino , Neurônios Motores/patologia , Fatores de Crescimento Neural/química , Fatores de Crescimento Neural/farmacologia , Ratos , Ratos Sprague-Dawley , Células Receptoras Sensoriais/patologia
8.
J Biomed Mater Res A ; 106(3): 746-757, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29052368

RESUMO

The foreign body reaction (FBR) against an implanted device is characterized by the formation of a fibrotic tissue around the implant. In the case of interfaces for peripheral nerves, used to stimulate specific group of axons and to record different nerve signals, the FBR induces a matrix deposition around the implant creating a physical separation between nerve fibers and the interface that may reduce its functionality over time. In order to understand how the FBR to intraneural interfaces evolves, polyimide non-functional devices were implanted in rat peripheral nerve. Functional tests (electrophysiological, pain and locomotion) and histological evaluation demonstrated that implanted devices did not cause any alteration in nerve function, in myelinated axons or in nerve architecture. The inflammatory response due to the surgical implantation decreased after 2 weeks. In contrast, inflammation was higher and more prolonged in the device implanted nerves with a peak after 2 weeks. With regard to tissue deposition, a tissue capsule appeared soon around the devices, acquiring maximal thickness at 2 weeks and being remodeled subsequently. Immunohistochemical analysis revealed two different cell types implicated in the FBR in the nerve: macrophages as the first cells in contact with the interface and fibroblasts that appear later at the edge of the capsule. Our results describe how the FBR against a polyimide implant in the peripheral nerve occurs and which are the main cellular players. Increasing knowledge of these responses will help to improve strategies to decrease the FBR against intraneural implants and to extend their usability. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 746-757, 2018.


Assuntos
Materiais Biocompatíveis/efeitos adversos , Reação a Corpo Estranho/patologia , Imidas/efeitos adversos , Implantes Experimentais , Fibras Nervosas/patologia , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Feminino , Células Gigantes de Corpo Estranho , Inflamação/patologia , Macrófagos/metabolismo , Proteínas dos Microfilamentos/metabolismo , Ratos Sprague-Dawley , Fatores de Tempo
9.
Annu Int Conf IEEE Eng Med Biol Soc ; 2017: 1938-1941, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29060272

RESUMO

A biomedical interface that combines into a single and compact device the recording of biopotentials and the electrical stimulation of neural fibres is presented. It is intended for enabling the control over a robotic hand and for restoring the sensory feedback in amputees by directly interfacing the peripheral nervous system (PNS) in closed-loop. A modular system consisting in one or more independent 16-channels bidirectional units was conceived. Each module is based on three 0.35µm bulk-CMOS integrated circuits (ICs): a recording unit, a High-Voltage (HV) stimulator and a HV booster. A tunable bandwidth (10Hz-8kHz) allows the recording IC to acquire both electroneurographyc (ENG) and electromiographyc (EMG) signals with a programmable gain up to 43.5dB. The signals are then converted into a digital domain by means of a ΣΔ converter. Due to the typical high impedance at the electrode-tissue interface, a programmable HV booster that increases the stimulation voltage up to 19V was designed. It is directly controlled by the stimulation module that generates current-based pulses with a programmable amplitude and pulse-width. The whole system was validated by means of in-vivo experiments in rats.


Assuntos
Sistema Nervoso Periférico , Amputados , Animais , Estimulação Elétrica , Ratos
10.
J Neural Eng ; 14(6): 066016, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28695839

RESUMO

OBJECTIVE: Interfacing the peripheral nervous system can be performed with a large variety of electrode arrays. However, stimulating and recording a nerve while having a reasonable amount of channels limits the number of available systems. Translational research towards human clinical trial requires device safety and biocompatibility but would benefit from design flexibility in the development process to individualize probes. APPROACH: We selected established medical grade implant materials like precious metals and Parylene C to develop a rapid prototyping process for novel intrafascicular electrode arrays using a picosecond laser structuring. A design for a rodent animal model was developed in conjunction with an intrafascicular implantation strategy. Electrode characterization and optimization was performed first in saline solution in vitro before performance and biocompatibility were validated in sciatic nerves of rats in chronic implantation. MAIN RESULTS: The novel fabrication process proved to be suitable for prototyping and building intrafascicular electrode arrays. Electrochemical properties of the electrode sites were enhanced and tested for long-term stability. Chronic implantation in the sciatic nerve of rats showed good biocompatibility, selectivity and stable stimulation thresholds. SIGNIFICANCE: Established medical grade materials can be used for intrafascicular nerve electrode arrays when laser structuring defines structure size in the micro-scale. Design flexibility reduces re-design cycle time and material certificates are beneficial support for safety studies on the way to clinical trials.


Assuntos
Eletrodos Implantados , Desenho de Equipamento/métodos , Lasers , Teste de Materiais/métodos , Nervo Isquiático/fisiologia , Potenciais de Ação/fisiologia , Animais , Teste de Materiais/instrumentação , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...